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“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age 
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one 

trillion rays w
ere traced in the generation of this im

age. More Fun with Rays
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Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s 

sc
ul

pt
ur

e"
 b

y 
Tr

ev
or

 G
. Q

ua
yl

e 
(2

00
8)

"POV Planet" by Casey Uhrig (2004) 
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http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/


The basic algorithm is 
straightforward, but there's 
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit 

on the back of his business card.  (circa 1983)

Ray-tracing / ray-marching: 
It doesn’t take much code

3



A ray is defined parametrically as

P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the 
ray’s direction, a unit-length vector.

We can expand this equation to three dimensions, x, y and z:

x(t) = xE + txD
y(t) = yE + tyD         t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays
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A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0

Substituting equation (α) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv_1) + yN(yE+tyD-yv_1) + zN(zE+tzD-zv_1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons
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Half-planes method
● Each edge defines an infinite half-plane 

covering the polygon.  If the point P lies 
in all of the half-planes then it must be in 
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.

○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.
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eeR

Point in convex polygon
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Barycentric coordinates (tA,tB,tC) are a 
coordinate system for describing the location of 
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’ 

placed at (A,B,C) respectively so that the 
center of gravity of the triangle lies at P.

● (tA,tB,tC) are proportional to the subtriangle 
areas of the three vertices.
○ The area of a triangle is ½ the length of the cross 

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates
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Barycentric coordinates
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// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
  vec3 v0 = b - a, v1 = c - a, v2 = p - a;
  float d00 = dot(v0, v0);
  float d01 = dot(v0, v1);
  float d11 = dot(v1, v1);
  float d20 = dot(v2, v0);
  float d21 = dot(v2, v1);
  float denom = d00 * d11 - d01 * d01;
  float v = (d11 * d20 - d01 * d21) / denom;
  float w = (d00 * d21 - d01 * d20) / denom;
  float u = 1.0 - v - w;
  return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)



Hard shadows

To simulate shadows with rays, fire a ray from 
P towards each light Li.  If the ray hits another 
object before the light, then discard Li in the 
sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.
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Softer shadows
Shadows in nature are not sharp because light sources are not 
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration: 

a coarse simulation of an integral over a space 
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

10



R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows
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Spotlights

D

To create a spotlight shining along axis S, you 
can multiply the (diffuse+specular) term by 
(max(L•S,0))m.  

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can 
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).
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1 Or sound waves or other waves

Transparency and Refraction

To add transparency, generate and trace a new 
transparency ray with ET=P, DT=D.
For realism, DT should deviate (slightly) from D. The angle of 
incidence of a ray of light where it strikes a surface is the acute 
angle between the ray and the surface normal.
The refractive index of a material is a measure 
of how much the speed of light1 is reduced 
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

13
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Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of 
light at the interface between two materials is equal to the 
inverse ratio of the refractive indices of the materials is equal 
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord 
Snell (1591-1626) and René Descartes (1596-1650) but first 
discovery goes to Ibn Sahl (940-1000) of Baghdad.
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Refraction for rays

Using Snell’s Law and the angle of 
incidence of the incoming ray, we 
can calculate the angle from the 
negative normal to the outbound 
ray.

E
D

P

P’

N
θ1

θ2

15



Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in 

[-1,1].
● We call this the angle of total 

internal reflection: light is trapped 
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal 
reflection
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Fresnel term

Example from: 
https://www.scratchapixel.com/lessons/3d-basic-rendering/intro
duction-to-shading/reflection-refraction-fresnel

● Light is more likely to be
reflected rather than 
transmitted near grazing angles

● This effect is modelled by Fresnel equation, which gives 
the probability that a photon is reflected rather than 
transmitted (or absorbed)
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Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS
the misidentification of a signal frequency, 

introducing distortion or error.
"high-frequency sounds are prone to aliasing"
2. COMPUTING
the distortion of a reproduced image so that 

curved or inclined lines appear 
inappropriately jagged, caused by the 
mapping of a number of points to the same 
pixel.
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Anti-aliasing
Fundamentally, the problem with aliasing is that we’re sampling an infinitely 
continuous function (the color of the scene) with a finite, discrete function (the 
pixels of the image).

One solution to this is super-sampling.  If we fire multiple rays through each 
pixel, we can average the colors 
computed for every ray together 
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl
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Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit: 
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 21
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Great for…
● Collision detection between scene 

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization 
method for ray-based rendering 
is the use of bounding volumes.

Nested bounding volumes 
allow the rapid culling of large 
portions of geometry

● Test against the bounding 
volume of the top of the scene 
graph and then work down.
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Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit 
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders 
● common in early FPS games
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Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.

● Pro: Rays can skip 
subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object
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Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.

● Pro: The ray can skip empty 
cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty cells

● Popular for voxelized games 
(ex: Minecraft)
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The BSP tree pre-partitions the scene 
into objects in front of, on, and behind 
a tree of planes.
● This gives an ordering in which to test 

scene objects against your ray
● When you fire a ray into the scene, you 

test all near-side objects before testing 
far-side objects.

Challenges: 
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees
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Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)
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